45 research outputs found

    Ruin Theory for Dynamic Spectrum Allocation in LTE-U Networks

    Full text link
    LTE in the unlicensed band (LTE-U) is a promising solution to overcome the scarcity of the wireless spectrum. However, to reap the benefits of LTE-U, it is essential to maintain its effective coexistence with WiFi systems. Such a coexistence, hence, constitutes a major challenge for LTE-U deployment. In this paper, the problem of unlicensed spectrum sharing among WiFi and LTE-U system is studied. In particular, a fair time sharing model based on \emph{ruin theory} is proposed to share redundant spectral resources from the unlicensed band with LTE-U without jeopardizing the performance of the WiFi system. Fairness among both WiFi and LTE-U is maintained by applying the concept of the probability of ruin. In particular, the probability of ruin is used to perform efficient duty-cycle allocation in LTE-U, so as to provide fairness to the WiFi system and maintain certain WiFi performance. Simulation results show that the proposed ruin-based algorithm provides better fairness to the WiFi system as compared to equal duty-cycle sharing among WiFi and LTE-U.Comment: Accepted in IEEE Communications Letters (09-Dec 2018

    Adversarial Stacked Auto-Encoders for Fair Representation Learning

    Get PDF
    Training machine learning models with the only accuracy as a final goal may promote prejudices and discriminatory behaviors embedded in the data. One solution is to learn latent representations that fulfill specific fairness metrics. Different types of learning methods are employed to map data into the fair representational space. The main purpose is to learn a latent representation of data that scores well on a fairness metric while maintaining the usability for the downstream task. In this paper, we propose a new fair representation learning approach that leverages different levels of representation of data to tighten the fairness bounds of the learned representation. Our results show that stacking different auto-encoders and enforcing fairness at different latent spaces result in an improvement of fairness compared to other existing approaches.Comment: ICML2021 ML4data Workshop Pape

    ApplianceNet: A neural network based framework to recognize daily life activities and behavior in smart home using smart plugs

    Get PDF
    A smart plug can transform the typical electrical appliance into a smart multi-functional device, which can communicate over the Internet. It has the ability to report the energy consumption pattern of the attached appliance which offer the further analysis. Inside the home, smart plugs can be utilized to recognize daily life activities and behavior. These are the key elements to provide human-centered applications including healthcare services, power consumption footprints, and household appliance identification. In this research, we propose a novel framework ApplianceNet that is based on energy consumption patterns of home appliances attached to smart plugs. Our framework can process the collected univariate time-series data intelligently and classifies them using a multi-layer, feed-forward neural network. The performance of this approach is evaluated on publicly available real homes collected dataset. The experimental results have shown the ApplianceNet as an effective and practical solution for recognizing daily life activities and behavior. We measure the performance in terms of precision, recall, and F1-score, and the obtained score is 87%, 88%, 88%, respectively, which is 11% higher than the existing method in terms of F1-score. Furthermore, our scheme is simple and easy to adopt in the existing home infrastructure

    On the Fairness of Generative Adversarial Networks (GANs)

    Get PDF
    Generative adversarial networks (GANs) are one of the greatest advances in AI in recent years. With their ability to directly learn the probability distribution of data, and then sample synthetic realistic data. Many applications have emerged, using GANs to solve classical problems in machine learning, such as data augmentation, class unbalance problems, and fair representation learning. In this paper, we analyze and highlight fairness concerns of GANs model. In this regard, we show empirically that GANs models may inherently prefer certain groups during the training process and therefore they're not able to homogeneously generate data from different groups during the testing phase. Furthermore, we propose solutions to solve this issue by conditioning the GAN model towards samples' group or using ensemble method (boosting) to allow the GAN model to leverage distributed structure of data during the training phase and generate groups at equal rate during the testing phase.Comment: submitted to International Joint Conference on Neural Networks (IJCNN) 202

    Multiple adversarial domains adaptation approach for mitigating adversarial attacks effects

    Get PDF
    Although neural networks are near achieving performance similar to humans in many tasks, they are susceptible to adversarial attacks in the form of a small, intentionally designed perturbation, which could lead to misclassifications. The best defense against these attacks, so far, is adversarial training (AT), which improves a model’s robustness by augmenting the training data with adversarial examples. However, AT usually decreases the model’s accuracy on clean samples and could overfit to a specific attack, inhibiting its ability to generalize to new attacks. In this paper, we investigate the usage of domain adaptation to enhance AT’s performance. We propose a novel multiple adversarial domain adaptation (MADA) method, which looks at this problem as a domain adaptation task to discover robust features. Specifically, we use adversarial learning to learn features that are domain-invariant between multiple adversarial domains and the clean domain. We evaluated MADA on MNIST and CIFAR-10 datasets with multiple adversarial attacks during training and testing. The results of our experiments show that MADA is superior to AT on adversarial samples by about 4% on average and on clean samples by about 1% on average

    A contract theory-based incentive mechanism for UAV-enabled VR-based services in 5G and beyond

    Get PDF
    The proliferation of novel infotainment services such as Virtual Reality(VR)-based services has fundamentally changed the existing mobile networks. These bandwidth-hungry services expanded at a tremendously rapid pace, thus, generating a burden of data traffic in the mobile networks. To cope with this issue, one can use Multi-access Edge Computing (MEC) to bring the resource to the edge. By doing so, we can release the burden of the core network by taking the communication, computation, and caching resources nearby the end-users (UEs). Nevertheless, due to the vast adoption of VR-enabled devices, MEC resources might be insufficient in peak times or dense settings. To overcome these challenges, we propose a system model where the service provider (SP) might rent Unmanned Area Vehicles (UAVs) from UAV service providers (USPs) to serve as micro-based stations (UBSs) that expand the service area and improve the spectrum efficiency. In which, UAV can pre-cached certain sets of VR-based contents and serve UEs via air-to-ground (A2G) communication. Furthermore, future intelligent devices are capable of 5G and B5G communication interfaces, and thus, they can communicate with UAVs via A2G links. By doing so, we can significantly reduce a considerable amount of data traffic in mobile networks. In order to successfully enable such kinds of services, an attractive incentive mechanism is required. Therefore, we propose a contract theory-based incentive mechanism for UAV-assisted MEC in VR-based infotainment services, in which the MEC offers an amount reward to a UAV for serving as a UBS in a specific location for certain time slots. We then derive an optimal contract-based scheme with individual rationality and incentive compatibility conditions. The numerical findings show that our proposed approach outperforms the Linear Pricing (LP) technique and is close to the optimal solution in terms of social welfare. Additionally, our proposed scheme significantly enhanced the fairness of utility for UAVs in asymmetric information problems

    Joint communication, computation, and control for computational task offloading in vehicle-assisted multi-access edge computing

    Get PDF
    Future generation of Electric Vehicles (EVs) equipped with modern technologies will impose a significant burden on computation and communication to the network due to the vast extension of onboard infotainment services. To overcome this challenge, multi-access edge computing (MEC) or Fog Computing can be employed. However, the massive adoption of novel infotainment services such as Augmented Reality, Virtual Reality-based services will make the MEC and Fog resources insufficient. To cope with this issue, we propose a system model with onboard computation offloading, where an EV can utilize its neighboring EVs resources that are not resource-constrained to enhance its computing capacity. Then, we propose to solve the problem of computational task offloading by jointly considering the communication, computation, and control in a mobile vehicular network. We formulate a mixed-integer non-linear problem (MINLP) to minimize the trade-off between latency and energy consumption subject to the network resources and the mobility of EVs. The formulated problem is solved via the block coordination descent (BCD) method. In such a way, we decompose the original MINLP problem into three subproblems which are resource block allocation (RBA), power control and interference management (PCP), and offload decision problem (ODP). We then alternatively obtain solutions of RBA and PCP via the duality theory, and the third sub-problem is solvable via the relaxation method and alternating direction Lagrangian multiplier method (ADMM). Numerical results reveal that the proposed solution BCD-based algorithm performs a fast convergence rate
    corecore